Three coins are tossed once. Find the probability of getting at most $2$ heads.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

When three coins are tossed once, the sample space is given by $S =\{ HHH , HHT , HTH , THH , HTT , THT , TTH , TTT \}$

$\therefore$ Accordingly, $n ( S )=8$

It is known that the probability of an event $A$ is given by

$P ( A )=\frac{\text { Number of outcomes favourable to } A }{\text { Total number of possible outcomes }}=\frac{n( A )}{n( S )}$

Let $E$ be the event of the occurrence of at most $2$ heads.

Accordingly, $E =\{ HHT , \,HTH , \,THH , \,HTT , \,THT \,, TTH , \,TTT \}$

$\therefore P(E)=\frac{n(E)}{n(S)}=\frac{7}{8}$

Similar Questions

In a class of $60$ students, $40$ opted for $NCC,\,30$ opted for $NSS$ and $20$ opted for both $NCC$ and $NSS.$ If one of these students is selected at random, then the probability that the student selected has opted neither for $NCC$ nor for $NSS$ is

  • [JEE MAIN 2019]

Describe the sample space for the indicated experiment: A coin is tossed three times.

A fair coin is tossed four times, and a person win $\mathrm {Rs.}$ $1$ for each head and lose  $\mathrm {Rs.}$ $1.50$ for each tail that turns up. From the sample space calculate how many different amounts of money you can have after four tosses and the probability of having each of these amounts.

The event $A$ is independent of itself if and only if $P(A) = $

Two dice are thrown. The events $A, B$ and $C$ are as follows:

$A:$ getting an even number on the first die.

$B:$ getting an odd number on the first die.

$C:$ getting the sum of the numbers on the dice $\leq 5$

Describe the events  $A$ but not $C$